Coronary Flow Reserve & Index of Microvascular Resistance in Acute STEMI survivors

David Carrick

Young Investigator Award
London, 28th January 2016
Coronary vs myocardial reperfusion

Acute STEMI

Angiography

Primary PCI stent
Successful PCI but **failed** myocardial reperfusion
Microvascular obstruction often passes undetected as CMR not usually done

In-vivo MRI
- Early Gad
- MVO

Post-mortem MRI
- T2*
- Haemorrhage
- T2*
- Cardiac rupture

Rationale for diagnostic wire to assess reperfusion injury

IMR=54
Hypotheses

1) Guidewire based assessment of microvascular function during routine care would be feasible.

 Compared to either diagnostic test alone

2) The combination of CFR and IMR might be more closely associated with infarct pathologies.

3) The combination of a reduced CFR and increased IMR would have incremental prognostic and clinical significance.
METHODS: coronary microvascular function assessed with thermodilution

Saline, 18 °C
Intra-coronary injection
3 ml

Coronary flow reserve, CFR
= Tmn rest / Tmn hyperaemia

Index of microvascular resistance, IMR
= Distal coronary pressure (Pd) x mean transit time (Tmn) hyperaemia
Study design

288 acute STEMI patients

ClinicalTrials.gov
BHF MR-MI study
NCT02072850

Enrollment May 2011 – Nov 2012
Follow-up to July 2014 (min 18 months)
A study of bleeding hearts after heart attack

288 STEMI patients

Coronary Physiology
IMR and CFR

PressureWire Sensor in the coronary artery
A study of bleeding hearts after heart attack

288 STEMI patients

Coronary Physiology
IMR and CFR

Cardiac MRI 1.5T

Study design

PressureWire Sensor in the artery

LGE T2*
Acute STEMI, n = 288
Primary PCI with coronary physiology

Day 2 MRI

CMR at 6-months
n = 264 (93%)

Health outcome
n = 288 (100%)

Carrick et al, BHF MR-MI study
Acute STEMI, $n = 288$
Primary PCI with coronary physiology

Day 2 MRI

IMR and CFR
Operator only acquired hyperaemic thermodilution measurements ($n=5$)
$n = 283$

CMR at 6-months
$n = 264 (93\%)$

Health outcome
$n = 288 (100\%)$

ClinicalTrials.gov
Carrick et al, BHF MR-MI study
Acute STEMI, n = 288
Primary PCI with coronary physiology

Day 2 MRI

IMR and CFR
Operator only acquired hyperaemic thermodilution measurements (n=5)
n = 283

Analysis

CMR with evaluable T2* map
Intolerance of scan, Cardio-resp motion artefact
n = 219

CMR at 6-months
n = 264 (93%)

Health outcome
n = 288 (100%)

ClinicalTrials.gov
Carrick et al, BHF MR-MI study
Results

STEMI
n = 219

Myocardial haemorrhage
Compared with CFR, IMR was more strongly associated with severe vascular damage.

STEMI

n = 219

Myocardial haemorrhage

IMR 27 vs. haemorrhage

AUC = 0.73 (0.66, 0.79)

CFR 1.5 vs. haemorrhage

AUC = 0.37 (0.30, 0.45)
Compared with IMR, CFR was discriminative of MVO in patients with less severe vasc damage.

STEMI
- n = 219

No Haemorrhage
- n = 128

MVO
- n = 85

No MVO
- n = 43
The combination of reduced CFR (<2) & increased IMR (>40): MV associate all cause death/ HF

HR 4.29 (1.83, 10.08); p<0.001
All cause death or heart failure
...however, this composite did not add incremental prognostic value to IMR>40 alone

HR 4.29 (1.83, 10.08); p<0.001
All cause death or heart failure

HR 4.36 (2.10, 9.06); P<0.001
All cause death or heart failure
Microvascular dysfunction (CFR<2, IMR>40) and subsequent LV outcomes

MV analysis CFR<2, IMR>40:
- Change in EF (-3.16 (-5.25, -1.07); p=0.003)
- Change in LVEDV (6.88 (-1.16, 14.92); p=0.093)
Conclusions

- CFR & IMR were associated with change in LVEF
- IMR is more strongly associated with severe vascular damage (IMH) and has stronger prognostic significance
- IMR<27 is a rule-out test for IMH
- IMR>40 has prognostic value
- Routine measurement of IMR is feasible and has potential for immediate risk stratification
Acknowledge British Heart Foundation

Patients

Hospital staff